Parameter tuning for configuring and analyzing evolutionary algorithms
نویسندگان
چکیده
منابع مشابه
Parameter tuning for configuring and analyzing evolutionary algorithms
In this paper we present a conceptual framework for parameter tuning, provide a survey of tuning methods, and discuss related methodological issues. The framework is based on a three-tier hierarchy of a problem, an evolutionary algorithm (EA), and a tuner. Furthermore, we distinguish problem instances, parameters, and EA performance measures as major factors, and discuss how tuning can be direc...
متن کاملEfficient and Robust Parameter Tuning for Heuristic Algorithms
The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...
متن کاملParameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist
Finding appropriate parameter values for Evolutionary Algorithms (EAs) is one of the persistent challenges of Evolutionary Computing. In recent publications we showed how the REVAC (Relevance Estimation and VAlue Calibration) method is capable to find good EA parameter values for single problems. Here we demonstrate that REVAC can also tune an EA to a set of problems (a whole test suite). Hereb...
متن کاملAutomated Parameter Tuning for Steering Algorithms
We propose a statistical framework and a methodology for automatically characterizing the influence that a steering algorithm’s parameters have on its performance. Our approach uses three performance criteria: the success rate of an algorithm in solving representative scenarios, the quality of the simulations solution, and the algorithm’s computational efficiency. Given an objective defined as ...
متن کاملDistributed parameter tuning for genetic algorithms
Genetic Algorithms (GA) is a family of search algorithms based on the mechanics of natural selection and biological evolution. They are able to efficiently exploit historical information in the evolution process to look for optimal solutions or approximate them for a given problem, achieving excellent performance in optimization problems that involve a large set of dependent variables. Despite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Swarm and Evolutionary Computation
سال: 2011
ISSN: 2210-6502
DOI: 10.1016/j.swevo.2011.02.001