Parameter tuning for configuring and analyzing evolutionary algorithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter tuning for configuring and analyzing evolutionary algorithms

In this paper we present a conceptual framework for parameter tuning, provide a survey of tuning methods, and discuss related methodological issues. The framework is based on a three-tier hierarchy of a problem, an evolutionary algorithm (EA), and a tuner. Furthermore, we distinguish problem instances, parameters, and EA performance measures as major factors, and discuss how tuning can be direc...

متن کامل

Efficient and Robust Parameter Tuning for Heuristic Algorithms

The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...

متن کامل

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist

Finding appropriate parameter values for Evolutionary Algorithms (EAs) is one of the persistent challenges of Evolutionary Computing. In recent publications we showed how the REVAC (Relevance Estimation and VAlue Calibration) method is capable to find good EA parameter values for single problems. Here we demonstrate that REVAC can also tune an EA to a set of problems (a whole test suite). Hereb...

متن کامل

Automated Parameter Tuning for Steering Algorithms

We propose a statistical framework and a methodology for automatically characterizing the influence that a steering algorithm’s parameters have on its performance. Our approach uses three performance criteria: the success rate of an algorithm in solving representative scenarios, the quality of the simulations solution, and the algorithm’s computational efficiency. Given an objective defined as ...

متن کامل

Distributed parameter tuning for genetic algorithms

Genetic Algorithms (GA) is a family of search algorithms based on the mechanics of natural selection and biological evolution. They are able to efficiently exploit historical information in the evolution process to look for optimal solutions or approximate them for a given problem, achieving excellent performance in optimization problems that involve a large set of dependent variables. Despite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Swarm and Evolutionary Computation

سال: 2011

ISSN: 2210-6502

DOI: 10.1016/j.swevo.2011.02.001